Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Journal of Microbiology Biotechnology and Food Sciences ; 2023.
Article in English | Web of Science | ID: covidwho-20244156

ABSTRACT

Vietnam is a country that produces a variety of agricultural products, including vegetables, tubers, fruits, and processed products. Along with the increase in population, the demand for consumers also increases, and the by-products of farming are increasing and being discharged into the environment. This is one of the critical research issues that need to be solved to ensure sustainability in agriculture. This review summarized recent studies on familiar sources of by-products in Vietnam, such as banana peels, citrus peels, dragon fruit skins, rice bran, and rice husks, and their potential in the food industry. Some solutions are also proposed to solve and turn this low-value raw material into a high-value product and serve a variety of products and consumers in the food industry. Especially after the COVID19 pandemic, the by-products contain valuable and reusable biological resources. These compounds could be future applications to support improving the consumer's immune system and various health benefits. Processed and utilized by-products from food production could not only help increase incomes for farmers, especially in developing countries like Vietnam but also could aid in ensuring food security and sustainability in agricultural production.

2.
Business Inform ; 2:145-154, 2023.
Article in Ukrainian | CAB Abstracts | ID: covidwho-2317999

ABSTRACT

The Russian invasion of Ukraine and the COVID-19 pandemic have actualized the need to rethink the recreational use of thermal mineral springs by resort hotels in order to treat the consequences of post-war injuries, psychological rehabilitation and health restoration. Solving these problems requires strengthening the role of recreational enterprises and resort hotels in restoring the health of the population by expanding the directions of their economic activity and forming the investment attractiveness of the national resort and recreational product in world markets. The publication pays special attention to determining the physical and chemical properties of thermal mineral springs, which is an important component in the development of healing methods and the creation of specific health recovery programs. The spatial structure of the distribution of thermal mineral springs by regions of the world is clarified. The main types of establishments with thermal mineral springs, which provide recreational, healing and therapeutic services, are determined. In addition, the amount of financial losses suffered by institutions with thermal mineral springs as a result of the COVID-19 pandemic is determined, as well as the dynamics of volume and forecast of growth of the world market of thermal mineral springs, due to the need to recover health, is identified. According to the results of the study, it is found that thermal mineral springs are a unique natural resource. Their recreational use is the main activity of many resort hotels. As a result of the Russian aggression and the COVID-19 pandemic, there was a shift in emphasis in the functioning of resort hotels from relaxation and rest towards treatment and rehabilitation, which will help restore the demand for resort and recreational services in the post-war period. Thus, the increase in demand for the health-recovering, medical and recreational services will make it possible to expand the recreational use of thermal mineral springs, update the menu of services and become more appealing for attracting investment capital.

3.
Southwest China Journal of Agricultural Sciences ; 36(2):427-434, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-2316572

ABSTRACT

[Objective] Using the bimolecular fluorescence complementation (BiFC) technology, the present experiment aimed to study the interaction relationship and localization of the target peptide and the complementary peptide based on the porcine epidemic diarrhea virus (PEDV) S protein receptor binding site peptide in living cells, so as to provide the foundation and theoretical support for the further use of the peptide in the detection of porcine epidemic diarrhea virus. [Method] The target peptide was designed according to the physical and chemical characteristics of the target protein, such as the amino acid composition, the type of charge, the ability to form intennolecular hydrogen bonds, the strength of polarity, and hydrophobicity;According to the amino acid composition of the target protein, a complementary peptide that interacted with it in theory was designed, and the target peptide and complementary peptide were predicted and analyzed by using bioinfonnatics tools;The target peptide and complementary peptide were inserted into the pBiFC-VC155 and pBiFC-VN173 vector, which was double digested by the EcoRI/XhoI and NotI/SalI, respectively, verified by enzyme digestion and sequencing, and then transfected into Vero cells to study the interaction between the target peptide and the complementary peptide, and the precise localization of BiFC complex in cells. [Result] Bioinfonnatics analysis showed that the target peptide and complementary peptide had hydrophilic and hydrophobic domains, respectively, and the hydrophilic domains were both positively and negatively charged, which could generate electrostatic attraction. The results of enzyme digestion and sequencing showed that the pBiFC-VC155-target peptide and pBiFC-VNI73-complementary peptide plasmids were successfully constructed;Cell transfection experiments showed that the target peptide and complementary peptide could form BiFC complexes in Vcro cells after co-transfection of recombinant plasmids, indicating that they could interact with each other;Indirect immuttolluorescence assay confirmed that the BiFC complex was mainly distributed in the nucleus. [Conclusion] It was confirmed that the peptide designed based on the PEW/ S protein receptor binding site can interact with each other in living cells, demonstrating the feasibility of the peptide for detection.

4.
Vestnik Rossiyskoy voyenno meditsinskoy akademii ; 3:567-580, 2022.
Article in Russian | CAB Abstracts | ID: covidwho-2303988

ABSTRACT

The issues of practicality in using perfluorocarbon gas transport emulsions (or pure perfluorocarbons) in severe virus-associated pneumonia treatment were considered, including those caused by coronavirus infection. Perfluorocarbons are fully fluorinated carbon compounds, on the basis of which artificial blood substitutes have been developed - gas transport perfluorocarbon emulsions for medical purposes. Perfluorocarbon emulsions were widely used in the treatment of patients in critical conditions of various genesis at the end of the last-the beginning of this century, accompanied by hypoxia, disorders of rheological properties and microcirculation of blood, perfusion of organs and tissues, intoxication, and inflammation. Large-scale clinical trials have shown a domestic plasma substitute advantage based on perfluorocarbons (perfluoroan) over foreign analogues. It is quite obvious that the inclusion of perfluorocarbon emulsions in the treatment regimens of severe virus-associated pneumonia can significantly improve this category's treatment results after analyzing the accumulated experience. A potentially useful area of therapy for acute respiratory distress syndrome is partial fluid ventilation with the use of perfluorocarbons as respiratory fluids as shown in the result of many studies on animal models and existing clinical experience. There is no gas-liquid boundary in the alveoli, as a result of which, there is an improvement in gas exchange in the lungs and a decrease in pressure in the respiratory tract when using this technique, due to the unique physicochemical properties of liquid perfluorocarbons. A promising strategy for improving liquid ventilation effectiveness using perfluorocarbon compounds is a combination with other therapeutic methods, particularly with moderate hypothermia. Antibiotics, anesthetics, vasoactive substances, or exogenous surfactant can be delivered to the lungs during liquid ventilation with perfluorocarbons, including to the affected areas, which will enhance the drugs accumulation in the lung tissues and minimize their systemic effects. However, the indications and the optimal technique for conducting liquid ventilation of the lungs in patients with acute respiratory distress syndrome have not been determined currently. Further research is needed to clarify the indications, select devices, and determine the optimal dosage regimens for perfluorocarbons, as well as search for new technical solutions for this technique.

5.
Polycyclic Aromatic Compounds ; 42(8):5249-5260, 2022.
Article in English | GIM | ID: covidwho-2262445

ABSTRACT

COVID-19 is a disease caused by the new coronavirus, which has been spreading rapidly all over the world. There is no exact drug yet for the treatment of COVID-19 disease, and its treatment is tried to be provided with existing drugs. However, new drug research is being carried out to treat this disease. Topological indices are numerical descriptors based on the molecular graph of the molecular structure. Topological indices are used in modeling to predict the physicochemical properties and biological activities of molecules in the quantitative structure-property relationship (QSPR), quantitative structure-activity relationship (QSAR) studies. In this study, remdesivir, chloroquine, hydroxychloroquine, theaflavin, thalidomide, arbidol, lopinavir, ritonavir drugs used in the treatment of COVID-19 patients are studied. The QSPR model is designed using some degree-based indices, Mostar-type indices, and distance-based topological indices to predict the various physicochemical properties of these drugs. The relationship analyses between the physicochemical properties and the topological indices in the QSPR model are done by using the curvilinear regression method.

6.
Jurnal Teknologi dan Industri Pangan ; 33(2):119-128, 2022.
Article in Indonesian | CAB Abstracts | ID: covidwho-2258302

ABSTRACT

Covid-19 pandemic had limited people's movement despite the demand to remain productive and maintain good health. Therefore, it was necessary to provide foods which are easy to distribute, durable, nutritious, and easily transformable to increase immunity. This research aims to develop a composite flour (TK) formula with optimal proportion of wheat flour (TT), snakehead fish flour (TIG), pumpkin flour (TBuL), and pumpkin seed flour (TBiL) which then enriched with zinc. The resulting TK is expected to be used as an ingredient for nutritious snacks containing high protein and zinc. The research was conducted in four stages, namely the making of each constituent flour, determining the best formulation with the Response Surface Methodology using Central Composite Design model, characterizing the physicochemical properties of TK and making meatballs, biscuits, and unting-unting from the TK. The three products were tested on experimental animals for their metabolic responses. The optimization of the formula resulted in three optimal formulations, namely formula A, B, and C with the proportion of TT:TIG:TBuL:TBiL respectively as follows 55:20:15:10;56.65:20:13.35:10;57.98:20:12.02:10. The most optimal formula of composite flour was formula A with the highest protein (26.12%) and zinc (18.06 mg/kg) content among other formulas. Then, zinc was added into Formula A using microencapsulation, and TK with protein content of 26.74% and zinc of 56.8 mg/kg were obtained. The histopatology observation on experimental animals showed that the three products made from TK did not cause necrosis of the liver or cell infiltration in the kidneys.

7.
Acta Pharmaceutica Sinica B ; 2023.
Article in English | EMBASE | ID: covidwho-2288517

ABSTRACT

In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.Copyright © 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences

8.
Chemical Engineering Journal ; 433(Part 3), 2022.
Article in English | CAB Abstracts | ID: covidwho-2288067

ABSTRACT

The chloroxylenol (PCMX) has shown well virucidal efficacy against COVID-19, but the large-scale utilization of which will undoubtedly pose extra environmental threaten. In the present study, the recycled industrial phenylenediamine residue was used and an integrated strategy of "carbonization-casting-activation" using super low-dose of activator and templates was established to achieve in-situ N/O co-doping and facile synthesis of a kind of hierarchical hyperporous carbons (HHPC). The sample of HHPC-1.25-0.5 obtained with activator and template to residue of 1.25 and 0.5 respectively shows super-high specific surface area of 3602 m2/g and volume of 2.81 cm3/g and demonstrates remarkable adsorption capacity of 1475 mg/g for PCMX in batch and of 1148 mg/g in dynamic column adsorption test. In addition, the HHPC-1.25-0.5 exhibits excellent reusability and tolerance for PCMX adsorption under various ionic backgrounds and real water matrix conditions. The combined physio-chemistry characterization, kinetic study and DFT calculation reveal that the enhanced high performances originate from the hierarchical pore structure and strong electrostatic interaction between PCMX and surface rich pyridinic-N and carbonyl groups.

9.
Wuji Cailiao Xuebao/Journal of Inorganic Materials ; 38(1):43-54, 2023.
Article in English | Scopus | ID: covidwho-2287077

ABSTRACT

Bacteria and viruses always posed a threat to human health. Most impressively, SARS-CoV-2 has raged around the world for almost three years, causing huge loss to human health. Facing increasing challenges of drug-resistance and poor treatment efficacy, new solutions are urgently needed to combat pathogenic microorganisms. Recently, nanozymes with intrinsic enzyme-like activities emerged as a promising new type of "antibiotics”. Nanozymes exhibit superior antibacterial and antiviral activities under physiological conditions by efficiently catalyzing generation of a large number of reactive oxygen species. Moreover, enhanced therapeutic effects are achieved in nanozyme-based therapy aided by the unique physicochemical properties of nanomaterials such as photothermal and photodynamic effects. This paper reviews the latest research progress in the field of anti-microbial nanozymes, systematically summarizes and analyzes the principles of nanozymes in the treatment of bacteria and viruses from a mechanistic point of view. An outlook on the future direction and the challenges of new anti-microbial infection nanomaterials are proposed to provide inspiration for developing next generation anti-microbial nanozymes. © 2023 Science Press. All rights reserved.

10.
International Conference on Mathematics and Computing, ICMC 2022 ; 415:263-277, 2022.
Article in English | Scopus | ID: covidwho-2283413

ABSTRACT

Coronavirus (COVID-19) is one of the recent infectious diseases caused by the virus SARS-CoV-2. The virus causes mild to severe respiratory problems which may lead to death in most cases. There is currently no precise or effective medication available to treat COVID-19 patients. Researchers and many pharmaceutical industries are working toward novel therapeutics and repurposed drugs for coronavirus. In this study, we consider some investigational antiviral drugs like Nitazoxanide, Imatinib, Famotidine, Galidesivir, and Artesunate that are used for the treatment of COVID-19. For this purpose, here we define various non-neighbor topological indices over the above aforesaid antiviral drugs to investigate the physicochemical properties associated with the indices. Further QSPR analysis was carried out between seven non-neighbor topological indices and eight physicochemical properties for the above drugs using the Linear regression method. The result obtained could aid in discovering new vaccines and drugs for COVID-19 disease. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

11.
Polycyclic Aromatic Compounds ; 42(6):2947-2969, 2022.
Article in English | CAB Abstracts | ID: covidwho-2280987

ABSTRACT

The molecular structure of hydroxychloroquine (HCQ) used in the treatment of malaria is recently suggested for emergency used in COVID-19. The chemical compound of HCQ is produced by chemical alteration of ethylene oxide from human products, such as waxy maize starch. The molecular graph is a graph comprising of atoms called vertices and the chemical bond between molecules is called edges. A topological index is a numerical representation of a chemical structure which correlates certain physico-chemical characteristics of underlying chemical compounds besides its numerical representation. To distinguish the creation of entropy-based measures from the structure of chemical graphs, several graph properties have been utilized. For computing the structural information of chemical graphs, the graph entropies have become the information-theoretic quantities. The graph entropy measure has attracted the research community due to its potential application in discrete mathematics, biology, and chemistry. In this paper, our contribution is to explore graph entropies for molecular structure of HCQ based on novel information function, which is the number of different degree vertices along with the number of edges between various degree vertices. More precisely, we have explored the degree-based topological characteristics of hydroxyethyl starch conjugated with hydroxychloroquine (HCQ-HEC). Also, we computed entropies of this structure by making a relation of degree-based topological indices with the help of information function. Moreover, we presented the numerical and graphical comparison of the computed results.

12.
Food Science and Human Wellness ; 12(4):1351-1358, 2023.
Article in English | Scopus | ID: covidwho-2246623

ABSTRACT

The contamination of Atlantic salmon with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded the development of the cold-chain food industry and posed possible risks to the population. Electron beam (E-beam) irradiation under 2, 4, 7, and 10 kGy can effectively inactivate SARS-CoV-2 in cold-chain seafood. However, there are few statistics about the quality changes of salmon exposed to these irradiation dosages. This work demonstrated that E-beam irradiation at dosages capable of killing SARS-CoV-2 induced lipid oxidation, decreased vitamin A content, and increased some amino acids and ash content. In addition, irradiation altered the textural features of salmon, such as its hardness, resilience, cohesiveness, and chewiness. The irradiation considerably affected the L*, a*, and b* values of salmon, with the L* value increasing and a*, b* values decreasing. There was no significant difference in the sensory evaluation of control and irradiated salmon. It was shown that irradiation with 2−7 kGy E-beam did not significantly degrade quality. The inactivation of SARS-CoV-2 in salmon is advised at a dose of 2 kGy. © 2022

13.
Water (Switzerland) ; 15(1), 2023.
Article in English | Scopus | ID: covidwho-2244031

ABSTRACT

In recent decades, the accumulation and fragmentation of plastics on the surface of the planet have caused several long-term climatic and health risks. Plastic materials, specifically microplastics (MPs;sizes < 5 mm), have gained significant interest in the global scientific fraternity due to their bioaccumulation, non-biodegradability, and ecotoxicological effects on living organisms. This study explains how microplastics are generated, transported, and disposed of in the environment based on their sources and physicochemical properties. Additionally, the study also examines the impact of COVID-19 on global plastic waste production. The physical and chemical techniques such as SEM-EDX, PLM, FTIR, Raman, TG-DSC, and GC-MS that are employed for the quantification and identification of MPs are discussed. This paper provides insight into conventional and advanced methods applied for microplastic removal from aquatic systems. The finding of this review helps to gain a deeper understanding of research on the toxicity of microplastics on humans, aquatic organisms, and soil ecosystems. Further, the efforts and measures that have been enforced globally to combat MP waste have been highlighted and need to be explored to reduce its potential risk in the future. © 2022 by the authors.

14.
Food Bioscience ; 52, 2023.
Article in English | Scopus | ID: covidwho-2237584

ABSTRACT

As a non-thermal food processing technology, Electron beam (E-beam) irradiation has been used to enhance microbial safety by deactivating unwanted spoilage and pathogenic microorganisms in food industry. This study evaluated the effects of E-beam irradiation at doses killing SARS-COV-2 on qualities and sensory attributes. The results showed that irradiation caused little effect on the proximate composition, amino acid content, texture, and sensory attributes (P > 0.05). However, E-beam increased TBARS (Thiobarbituric acid reactive substances) and lowered vitamin E content in dose-dependently. Irradiation up to 10 kGy significantly decreased unsaturated fatty acid (UFA) content and inhibited the increase in TVB-N (The total volatile basic nitrogen) while reducing cohesiveness and chewiness (P < 0.05). E-beam irradiation with 7–10 kGy caused greater ΔE values (ΔE > 5) via the significant increase of b*, accompanied by big visual difference in shrimp (P < 0.05). A dose of 4 kGy E-beam irradiation was recommended without altering its physicochemical properties and sensory attributes. © 2023 Elsevier Ltd

15.
Mol Biotechnol ; 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2220241

ABSTRACT

Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.

16.
Acta Pharmaceutica Sinica B ; 2023.
Article in English | ScienceDirect | ID: covidwho-2209788

ABSTRACT

In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.

17.
Scientific African ; 17(41), 2022.
Article in English | CAB Abstracts | ID: covidwho-2183040

ABSTRACT

The aviation industry is responsible for 12% of transport-related GHG emissions and 2-3% of the global GHG emissions, thus raising concerns for sustainable alternatives such as aviation biofuels. This study sought to analyze the potential of producing aviation fuel from rubber seed oil. Rubber seed oil (RSO) was extracted and the physicochemical properties investigated as well as the fatty acid composition. This result was simulated in ASPEN plus to determine the potential aviation biofuel produced using the UOP HEFA process. The study shows that the golden yellowish oil derived from rubber seed possessed a density 0.9 g/cm3 and pH of 6, refractive index of 1.48, heating value of 23.75 MJ/kg and composed of 75% area of FFA with Oleic and Linoleic acid been the most dominant. The HEFA process on ASPEN Plus showed 81% of feedstock was converted to hydrocarbons with aviation biofuel yield of 46%. It was estimated that the installation of the plant for aviation biofuel production has a total capital cost of $ 8,650,480 and a total operation cost of $ 328,728. The economic analysis shows that at a cost of USD 4/kg (USD 3.01/liter) of aviation biofuel has an Internal rate of return of 18.62% profitability of 1.18 and payback period of 14.9 years of the plant operating. This study established that rubber seed oil shows suitability and potential for sustainable aviation biofuel production.

18.
Food Bioscience ; : 102350, 2023.
Article in English | ScienceDirect | ID: covidwho-2165300

ABSTRACT

As a non-thermal food processing technology, Electron beam (E-beam) irradiation has been used to enhance microbial safety by deactivating unwanted spoilage and pathogenic microorganisms in food industry. This study evaluated the effects of E-beam irradiation at doses killing SARS-COV-2 on qualities and sensory attributes. The results showed that irradiation caused little effect on the proximate composition, amino acid content, texture, and sensory attributes (P > 0.05). However, E-beam increased TBARS (Thiobarbituric acid reactive substances) and lowered vitamin E content in dose-dependently. Irradiation up to 10 kGy significantly decreased unsaturated fatty acid (UFA) content and inhibited the increase in TVB-N (The total volatile basic nitrogen) while reducing cohesiveness and chewiness (P < 0.05). E-beam irradiation with 7–10 kGy caused greater ΔE values (ΔE > 5) via the significant increase of b*, accompanied by big visual difference in shrimp (P < 0.05). A dose of 4 kGy E-beam irradiation was recommended without altering its physicochemical properties and sensory attributes.

19.
Coronavirus Drug Discovery: Druggable Targets and In Silico Update: Volume 3 ; : 313-333, 2022.
Article in English | Scopus | ID: covidwho-2149151

ABSTRACT

The development of efficacious therapeutic agents with relatively low or no level of toxicity was necessitated due to the reemergence of coronavirus. The present study investigated the inhibitory potentials of 4-aminoquinolines (amopyroquine, mefloquine, amodiaquine, bispyroquine, quinine, chloroquine, hydroxychloroquine, chloroquine hydrochloride, chloroquine sulfate, cycloquine, and quinacrine) against selected structural and nonstructural proteins of SARS-CoV-2. The 4-aminoquinolines with higher binding affinities were selected for physicochemical properties, absorption, distribution, metabolism, and excretion (ADME) analysis. The binding energies were computed with Autodock vina screening software while physicochemical properties and ADME parameters were predicted through SwissADME server. Amopyroquine, mefloquine, bispyroquine, and quinine had the highest binding affinities with the amino acids in the pocket of the SARS-CoV-2 structural proteins (envelope, membrane, nucleocapsid, and spike) and nonstructural proteins (3-chymotrypsin-like protease, papain-like protease, and RNA-dependent RNA polymerase) compared with chloroquine and other 4-aminoquinolines used in this study. In addition, the pharmacokinetics and physicochemical parameters revealed that amopyroquine, mefloquine, bispyroquine, and quinine demonstrated good drug-like properties with relatively low toxic effects. The data from this study provide evidence that some of the 4-aminoquinolines can be repurposed and further developed as therapeutic agents with potentials to inhibit coronavirus cellular entry and replication. © 2022 Elsevier Inc. All rights reserved.

20.
Food Science and Human Wellness ; 12(4):1351-1358, 2023.
Article in English | ScienceDirect | ID: covidwho-2120472

ABSTRACT

The contamination of Atlantic salmon with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded the development of the cold-chain food industry and posed possible risks to the population. Electron beam (E-beam) irradiation under 2, 4, 7, and 10 kGy can effectively inactivate SARS-CoV-2 in cold-chain seafood. However, there are few statistics about the quality changes of salmon exposed to these irradiation dosages. This work demonstrated that E-beam irradiation at dosages capable of killing SARS-CoV-2 induced lipid oxidation, decreased vitamin A content, and increased some amino acids and ash content. In addition, irradiation altered the textural features of salmon, such as its hardness, resilience, cohesiveness, and chewiness. The irradiation considerably affected the L*, a*, and b* values of salmon, with the L* value increasing and a*, b* values decreasing. There was no significant difference in the sensory evaluation of control and irradiated salmon. It was shown that irradiation with 2−7 kGy E-beam did not significantly degrade quality. The inactivation of SARS-CoV-2 in salmon is advised at a dose of 2 kGy.

SELECTION OF CITATIONS
SEARCH DETAIL